Physics 2218 - Physics III: Waves and Thermal Physics Fall 2022

Lectures	MWF	11:20-12:10 PM	RK 230	Peter Wittich 397 PSB wittich@cornell.edu	5-3368
Section	T W	1:30 – 2:20 PM 2:40 – 3:30 PM	Clark 294D Clark 294A	Yikun Jiang PSB 4th floor yj366@cornell.edu	
Grader				Maciej Olszewski mw034@cornell.edu	

• Content:

This course is divided into two parts. The larger segment of the course focuses on wave phenomena. Topics include coupled harmonic oscillators, strings, sound and light waves, superposition principle, wave equations, Fourier series and transforms, diffraction and interference. The discussion is at the level of *The Physics of Waves* by Georgi. The second segment of the course covers thermodynamics and statistical mechanics at the level of Thermal Physics by Schroeder.

• Prerequisites

Co-requisite: PHYS 2210. Prerequisite: PHYS 2217 or very strong performance in PHYS 2213. Students would benefit from prior exposure to differential equations at the level of MATH 2930 or from co-registration in that course. Some linear algebra may be used, either prior or concurrent enrollment in linear algebra is recommended (MATH 2940, MATH 2210, or MATH 2230).

•	Books:
---	--------

Physics of Waves	H. Georgi	Required
Vibrations and Waves	A.P. French	Required
Physics of Vibrations and Waves	H.J. Pain & P. Rankin	Required
Thermal Physics	D.V. Schroeder	Required

The waves book by Georgi is available for free on the web (https://sites.harvard.edu/hgeorgi/files/2022/04/onenew.pdf) and will be linked on canvas. The other textbooks should all be available through CAMP as e-books.

• Online tools:

We will be using CANVAS for this class. You should be automatically enrolled in the course for Physics 2218, unless you are auditing. We will be sending out announcements via the linked email account so make sure to check it regularly.

We will also use ED DISCUSSIONS for crowd-sourced discussions. This is integrated into CANVAS. Finally, we will be using GRADESCOPE for grading assignments.

• Homework and Grade Policy

In addition to weekly homework, there will be a prelim and a final exam. Your final grade will be composed of participation, section, homework, and exam scores.

Homework will be distributed on Fridays and will be due a week later, all via GRADESCOPE. Homework must be submitted by 11:59 PM.

You have two late days for use during the semester, no questions asked; after that, late homework will not be accepted. You should not underestimate the importance of working every homework problem. These late days are intended to cover emergencies such as sickness, emergency travel, etc, so use the wisely. You must ask for the extension **before** the due date. Message the teaching staff, and we will create an extension for you on GRADESCOPE.

When you use an extension, the homework will be due at 11:59 PM at the end of the next business day (i.e., for a homework due on Friday, the new due date would be 11:59 PM on Monday.)

For regrade requests, please re-submit your homework via GRADESCOPE with a written request or explanation. It will be returned to you the following week.

For the homework, I encourage you to work in groups; however, the final homework you turn in should be your own.

• Academic Integrity

Cornell takes issues of academic integrity extremely seriously. Integrity and honesty will be absolutely essential in your future careers. Students who are found in violation of Cornell's Code of Academic Integrity can expect to be prosecuted to the full extent allowed by the code. Some examples of violations for which we have prosecuted students in the recent past:

- Turning in homework that has been copied from another student or downloaded from the internet. Working in groups is encouraged; however, your write-up must be your own.
- Copying the work of another student during a quiz or exam.
- Using cheat sheets, notes written on body appendages, clothing and hats, or programmed calculators during a quiz or exam.
- Changing an answer on a quiz or exam after it has been graded and submitting it for a regrade.
- Providing false reasons (e.g., illness, death in the family, interviews, and athletic events) for missing a quiz or exam. Proper documentation must be provided.
- Providing false reasons in requesting a make-up exam. Proper documentation must be provided.
- Copying material from sources such as Wikipedia without proper attribution or citations. Working with references is crucial in science so you should be familiar with it.

No matter how desperate your situation may seem, you should never violate the code of academic integrity and never make misrepresentations to your TA or your professors. Come talk to your me, your TA, or your advising dean for advice on how to resolve your difficulties.

See the Cornell Code of Academic Integrity online for more information.

• *Grading* Below please find a grade breakdown.

	%
HW	
Participation	1/3
Section	
Prelim	1/3
Final	1/3

Participation includes any in-class handouts.

Tentative Syllabus

Lect	Date	Topic	Reading	
		Wave Phenomena	0	
0	08/22	Simple Harmonic Oscillators 1	G1-G2, F3, P1	
1	08/24	Simple Harmonic Oscillators 2	G1-2, F3, P1	
2	08/26	Damped Harmonic Oscillators	G2, F3, P2	
3	08/29	Quality factors and driven, damped oscillators	G5, F4, P3	
4	08/31	Coupled scillators and normal modes	G5, F5, P4	
5	09/02	Many coupled oscillators/beaded string	G5, G10, F6	
	09/05	Labor Day		
6	09/07	Beaded String to continuous string	G5, F6	
7	09/09	Exploring the wave equation I	G5, F7, P5-6	
8	09/12	Exploring the wave equation II	G6, F7, P5-6	
9	09/14	Group and phase velocity	F7, P5	
10	09/16	Energy & Power in Waves	G7-8	
11	09/19	Fourier Series	G6, F6, P11	
12	09/21	Fourier Transform	G6, F6, P11	
13	09/23	Longitudinal Waves, slinky	G7, P7	
14	09/26	Longitudinal waves, solid rod	G7, P7	
15	09/28	Longitudinal waves, sound (pressure waves)	G7, P7	
16	09/30	Intensity in Sound Waves, Waves in 3 dimensions	G7, P10	
17	10/03	Electromagnetic Waves as 3d waves	G8, P9	
18	10/05	I ransmission and reflection I	G9, F8, P5	
19	10/07	I ransmission and reflection II	G9, F8, P7	
	10/10	Fall Break		
20	10/12	Iransmission and reflection III	G9, F8, P5-P7	
21	10/14	Diffraction Gratings & Thin Films	G13, F8, P13	
22	10/17	Diffraction by Circular Apertures	G13, F8, P13	
	10/18	Differentian by Multiple Slite	Cia Eg Dia	
23	10/19	Huygens Principle and Fraunhofer Diffraction	G13, 10, 113 G12 F8	
24 25	10/21	Interference from Multiple Sources	G12 F8 P12	
-5 26	10/24	Amplitude Modulation and Radio xmission	013, 10, 112	
20	10/20	Interferometers Doppler Effect		
_/	10/20	Thermodynamics		
28	10/31	Thermal Physics, Temperature & Heat	1-1/	
29	11/02	Ideal Gas Law. Equipartition Theorem	1-17	
30	11/04	First Law of Thermodynamics	17-31	
31	11/07	State Variables, Heat Capacity	28-33	
32	11/09	Enthalpy, Latent Heat, Phases/Phase Transitions	33-37	
33	11/11	Microstates and Macrostates	49-67	
34	11/14	Second Law of Thermodynamics, Einstein Solids	49-67	
35	11/16	Entropy, Thermal Equilibrium and 2nd law	49-67	
36	11/18	Entropy of Ideal Gas, Disorder, Reversiblity	67-84	
37	11/21	Heat Engine	122-148	
	11/23	Thanksgiving		
	11/25	Thanksgiving		
38	11/28	Carnot Cycle, other heat engines	122-148	
39	11/30	Second Law revisited		
40	12/02	Thermodynamic Potentials		
other				
41	12/05	Overflow and Exam prep		